An arithmetic intersection formula for denominators of Igusa class polynomials
نویسندگان
چکیده
In this paper we prove an explicit formula for the arithmetic intersection number (CM(K).G1)` on the Siegel moduli space of abelian surfaces, generalizing the work of Bruinier-Yang and Yang. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for the intersection number (CM(K).G1)` under strong assumptions on the ramification of the primitive quartic CM field K. Yang later proved this conjecture assuming that OK is freely generated by one element over the ring of integers of the real quadratic subfield. In this paper, we prove a formula for (CM(K).G1)` for more general primitive quartic CM fields, and we use a different method of proof than Yang. We prove a tight bound on this intersection number which holds for all primitive quartic CM fields. As a consequence, we obtain a formula for a multiple of the denominators of the Igusa class polynomials for an arbitrary primitive quartic CM field. Our proof entails studying the Embedding Problem posed by Goren and Lauter and counting solutions using our previous article that generalized work of Gross-Zagier and Dorman to arbitrary discriminants.
منابع مشابه
Comparing Arithmetic Intersection Formulas for Denominators of Igusa Class Polynomials
Bruinier and Yang conjectured a formula for intersection numbers on an arithmetic Hilbert modular surface, and as a consequence obtained a conjectural formula for CM(K).G1 under strong assumptions on the ramification in K. Yang later proved this conjecture under slightly stronger assumptions on the ramification. In recent work, Lauter and Viray proved a different formula for CM(K).G1 for primit...
متن کاملArithmetic Intersection on a Hilbert Modular Surface and the Faltings Height
In this paper, we prove an explicit arithmetic intersection formula between arithmetic Hirzebruch-Zagier divisors and arithmetic CM cycles in a Hilbert modular surface over Z. As applications, we obtain the first ‘non-abelian’ Chowla-Selberg formula, which is a special case of Colmez’s conjecture; an explicit arithmetic intersection formula between arithmetic Humbert surfaces and CM cycles in t...
متن کاملDenominators of Igusa Class Polynomials
— In [22], the authors proved an explicit formula for the arithmetic intersection number (CM(K).G1) on the Siegel moduli space of abelian surfaces, under some assumptions on the quartic CM field K. These intersection numbers allow one to compute the denominators of Igusa class polynomials, which has important applications to the construction of genus 2 curves for use in cryptography. One of the...
متن کاملComputing Igusa Class Polynomials via the Chinese Remainder Theorem
We present a new method for computing the Igusa class polynomials of a primitive quartic CM field. For a primitive quartic CM field, K, we compute the Igusa class polynomials modulo p for certain small primes p and then use the Chinese remainder theorem and a bound on the denominators to construct the class polynomials. We also provide an algorithm for determining endomorphism rings of Jacobian...
متن کاملA simplified setting for discrete logarithms in small characteristic finite fields
We present an algorithm for constructing genus 2 curves over a finite field with a given number of points on its Jacobian. This has important applications in cryptography, where groups of prime order are used as the basis for discrete-log based cryptosystems. For a quartic CM field K with primitive CM type, we compute the Igusa class polynomials modulo p for certain small primes p and then use ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012